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Abstract: The paper is focused to problems with finite and infinite models, time optimization of dynamic parameters in  the MASV method, called Method Aggregate State Variables. 
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1 Introduction
The MASV method, called Method Aggregate State Variables, and its applications consist of four parts:

· mathematical model

· control algorithm

· simulation control

· application in industry  

This paper describes some remarks to models and algorithms. Classical formulation of the MASV method does not solve the control in the finite time and construction algorithm uses the control in the infinite time. Time optimization cannot use this formulation. There are not dynamical parameters T, D .

In the paper we show various ways how to solve these problems.

2 Mathematical model of control system
Let a mathematical model of the nominal nonlinear subsystem be considered
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where  

x  - the vector of the state variables,  

u  - the vector of the control variables, 

 f - continuous vector functions,  

G - the matrix of the continuous functions  gi,j , 

n - the number of the state variables (the order      

of the nonlinear subsystem),  

nj - the partial order,  

m - the number of the control variables, 

T - the transpose symbol, 

dim - the dimension of a vector or 

         the order of a  matrix.

The condition of controllability of the nominal nonlinear subsystem (1) must hold [Zítek & Víteček 1999]
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It is supposed that  i = 1, 2,…, n; j = 1, 2,…, m  and strictly not distinguished between a subsystem (system) and a model in the entire the following text.

2 Control algorithms design – MASV method 

The task of the optimal tracking control design is the determination of the feedback control
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for the controllable nominal standard nonlinear subsystem (1), which for a given state trajectory  {xw(t)} ensures its tracking by a real state trajectory {x(t)} so that the value of the quadratic objective functional
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is minimal, 

where  

e - the error vector,  

D - the constant nonnegative aggregation matrix

 [dim D = (m,n), rank (DG) = m], 

T - the diagonal matrix of positive time constants  Tj  of the order m, i.e.
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By the method of the aggregation of the state variables, it is possible to obtain the optimal feedback control (Zítek & Víteček 1999)
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which causes the aggregated optimal closed-loop control system
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and minimal value of the quadratic objective functional (6)
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If the elements  dji  of the aggregation matrix  D  will be chosen in accordance with the formulas



[image: image19.wmf]ï

ï

þ

ï

ï

ý

ü

=

£

<

>

>

£

=

-

-

1

for

0

or

for

0

1

1

j

jr

j

j

ji

j

j

ji

d

r

i

r

d

r

i

r

i

d


(12)

then the characteristic polynomial of the aggregated optimal closed-loop control system (10) will be written in the form
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where  

s  - the complex variable in the Laplace transform, 

Nj - the characteristic polynomial of the j-th autonomous control subsystem of the partial order  nj.

It is obvious that in this case the optimal closed-loop control system consists of  m  autonomous linear control subsystems whose desired dynamic behaviour can be ensured by a suitable choice of the time constants  Tj  and coefficients  dji  of their characteristic polynomials (13), i.e. by a suitable choice of the matrix  T  and  D. It is very important that the quadratic objective functional (6) has only an auxiliary purpose.

The feedback control (9) demands knowledge of the exact mathematical model of the nominal nonlinear dynamic subsystem (1) The control  u  is non-robust and is often called the equivalent control. It ensures the aggregated optimal closed-loop control system (10) from which after the completion with the equations
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the full optimal closed-loop control system can be obtained in the form
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which has the characteristic polynomial (13).

3 Formulation some open question in the MASV method

 The MASV method was formulated considering

· infinite final time 

· constant value of parameters D, T
· energy optimization as a method is used.

These properties are basic for development   the MASV method.

We will make some remarks to 

· finite  and infinite  models,

· control in the finite time, 

· optimal control in the time 

· control   with error in the finite time,

· model with dynamic parameters T, D, 

· optimal control in the time using  dynamic parameters T, D
4   Remarks to open  problems 

4.1 Models with infinite and finite final  time and with error in final time 

We will rate models regarding  final time and  error in final time

Model MASV( ∞, 0) – classical MASV method. 
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Infinite final time and error is in infinity equal to 0.
The infinite final time is not realistic.

Model MASV (tf,0) – basic version with infinite final time, zero error 
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This model is realistic, but it is not usually solvable.

Model MASV (tf, error)   - version with the finite final time tf   and with limited value of 
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In this model the final time tf   is finite and  e is less that constants error.
4.1 Control algorithm  MASV(tf , error) 

The goal is finding tf  such that  e  in the final time are less than error.

One type of solution is the next algorithm. There is the main idea – transforming problem on the method MASV.

Control algorithm :

· find control by using method MASP.

· compile system of differential equations for errors

· find a priori estimate for solution  

· from a priori estimate  and calculate the value of  tf 
4.2 Time  eps -  optimization   using the method MASV(tf , error) 

Problem statement

Find  the minimal time  tf , which meets the MASV Model  (tf, eps).
Design control algorithm MASV (tf, error), choose  a priori estimate for solution of this problem.

4.3   Energy optimization  of  T, D

         One of the possible ways how to optimize T,D is minimizing the functional
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         Find such values of D, T that the functional  J*  becomes minimal.                 

4.5  Time eps - optimization the value of  T, D

Problem statement

       Find such T,D that tf(T,D) froms  method  MASV(  tf , eps)  is minimal.

      One of the possible ways how to solve this problem is optimizing variables using a priori estimate.  We find approximation of solution. 

4.6   Dynamic parameters T, D 

Dynamism parameters T, D passes from time optimization with variables  T, D. 

 Discreet algorithm: Set the discrete time sequence and calculate the optimal value of  T, D in the every time step during control  algorithm.
 Continuous algorithm: Calculate the optimal value of D,T in every time step.

Conclusions

The paper describes a concept   for using the MASV method   in the non-standard  condition  models and algorithms, where  the final time is finite and   optimization, dynamic parameters of T,D have to be taken into account.  

These ideas will be developed and employed on realistic problems in the next author’s paper.
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